The strong convergence of Schrödinger propagators
نویسندگان
چکیده
منابع مشابه
Convergence of Schrödinger Operators
For a large class, containing the Kato class, of real-valued Radon measures m on R the operators −∆ + ε∆ + m in L(R, dx) tend to the operator −∆ +m in the norm resolvent sense, as ε tends to zero. If d ≤ 3 and a sequence (μn) of finite real-valued Radon measures on R converges to the finite real-valued Radon measure m weakly and, in addition, supn∈N μ ± n (R) < ∞, then the operators −∆ + ε∆ + μ...
متن کاملSchrödinger-type propagators, pseudodifferential operators and modulation spaces
We prove continuity results for Fourier integral operators with symbols in modulation spaces, acting between modulation spaces. The phase functions belong to a class of nondegenerate generalized quadratic forms that includes Schrödinger propagators and pseudodifferential operators. As a byproduct we obtain a characterization of all exponents p, q, r 1 , r 2 , t 1 , t 2 ∈ [1, ∞] of modulation sp...
متن کاملComputing Schrödinger propagators on Type-2 Turing machines
We study Turing computability of the solution operators of the initial-value problems for the linear Schrödinger equation ut = i u + and the nonlinear Schrödinger equation of the form iut = − u + mu + |u|2u. We prove that the solution operators are computable if the initial data are Sobolev functions but noncomputable in the linear case if the initial data are Lp-functions and p = 2. The comput...
متن کاملStrong Convergence of the Iterations of Quasi $phi$-nonexpansive Mappings and its Applications in Banach Spaces
In this paper, we study the iterations of quasi $phi$-nonexpansive mappings and its applications in Banach spaces. At the first, we prove strong convergence of the sequence generated by the hybrid proximal point method to a common fixed point of a family of quasi $phi$-nonexpansive mappings. Then, we give applications of our main results in equilibrium problems.
متن کاملStrong convergence of modified noor iteration in CAT(0) spaces
We prove a strong convergence theorem for the modified Noor iterations in the framework of CAT(0) spaces. Our results extend and improve the corresponding results of X. Qin, Y. Su and M. Shang, T. H. Kim and H. K. Xu and S. Saejung and some others.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transactions of the American Mathematical Society
سال: 1981
ISSN: 0002-9947
DOI: 10.1090/s0002-9947-1981-0603781-x